TB 13.6 Binary Stars Ol-10-18

N. T. Gladd

Initialization: Be sure the file NTGUltilityFunctions.m is in the same directory as that from which this
notebook was loaded. Then execute the cell immediately below by mousing left on the cell bar to the
right of that cell and then typing “shift” + “enter”. Respond “Yes” in response to the query to evaluate
initialization cells.

SetDirectory[NotebookDirectory[]];
(» set directory where source files are located =x)
Get ["NTGUtilityFunctions.m"]; (* Load utilities package =)

Purpose

This is the 2nd in a series of notebooks in which | work through material and exercises in the magiste-
rial new book Modern Classical Physics by Kip S. Thorne and Roger D. Blandford. If you are a physicist
of any ilk, BUY THIS BOOK. You will learn from a close reading and from solving the exercises. See TB
13.4 Polytropes 01-01-18 for more discussion of this project.

Exercise 13.6 Problem: Shapes of Stars in a Tidally Locked Binary System

Consider two stars, with the same mass M orbiting each other in a circular orbit with
diameter (separation between the stars’ centers) a. Kepler's laws tell us that the stars’
orbital angular velocity is Q = /2GM/a®. Assume that each star’s mass is concentrated
near its center so that everywhere except near a star’s center the gravitational potential, in
an inertial frame, is ® = —=GM/ry — GM/ry with r; and r, the distances of the observation
point from the center of star 1 and star 2. Suppose that the two stars are “tidally locked”, i.e.
tidal gravitational forces have driven them each to rotate with rotational angular velocity
equal to the orbital angular velocity Q. (The moon is tidally locked to the earth; that is
why it always keeps the same face toward the earth.) Then in a reference frame that rotates
with angular velocity (2, each star’s gas will be at rest, v = (.

(a) Write down the total potential ® + ®., for this binary system in the rotating frame.

(b) Using Mathematica or Maple or some other computer software, plot the equipotentials
® + P, = (constant) for this binary in its orbital plane, and use these equipotentials
to describe the shapes that these stars will take if they expand to larger and larger
radii (with @ and M held fixed). You should obtain a sequence in which the stars,
when compact, are well separated and nearly round; and as they grow, tidal gravity
elongates them, ultimately into tear-drop shapes followed by merger into a single,
highly distorted star. With further expansion there should come a point where the
merged star starts flinging mass off into the surrounding space (a process not included
in this hydrostatic analysis).
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Analysis and solution

Figure 1 Geometry of the rotating binary star system
With equal masses, the dynamics are simplified. To obtain circular orbits, it is only necessary to equate

the centrifugal force with the gravitational attraction.
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where each star has mass M and move in a circle with radius r. The rotation period is
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Squaring this expression yields Kepler’s third law — the Law of Periods. The angular velocity is

27
w[3] = = — /. Sol[w[2], T]
T

TB expresses this in terms of a = 2 r, the separation of the stars
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w[4] = w[3] /. r>a/2
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If the mass of the stars is concentrated at their centers, the gravitational potential is

GM1 GM2
w[5] =§g = - -
rl r2
GM1 GM2
@g = — - —
rl r2

The centrifugal potential is

1 . .2 1 1
B = - — (er) - _I 202 (1px1,) - (Ipx1,) = - —r2Q?
2 2 2
W[6] = & = -—r2@q?
B = - — P2 Q?
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By the law of cosines

w[7] = r1? = r? + (a/2)® -2r (a/2) cos[e]

2
a

ri? == —+r?2-arcCos[6]
4

w[8] = r2? = r2+ (a/2)® - 2r (a/2) Cos[n - 6]

2
2__1 2
r2< == +r“+arcCos[O]
4

W[9] = &tot = Bz + 3. /. (W[5] // ER) /. (w[6] // ER)

GMLI GM2 r2gq?
rl r2 2

Ptot = -

w[10] = w[9] /. Solve[w[7], rl][2, 1] /. Solve[w[8], r2][2, 1]

1, ., 2GM1 26M2
Dot == - — P Q7 -
2

\/a2+4r'2—4ar‘Cos[e] \/a2+4r‘2+4ar‘Cos[9J
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w[1l] = w[1@] /. M1 - M /. M2 > M /. (w[4] // ER)

GMr? 2GM 2GM
Dot = - - -

3
a \/a2+4r‘274ar‘Cos[8] \/a2+4r‘2+4ar'Cos[e}

Clear [&BinaryStarsLocked] ;
#BinaryStarsLocked[r_, 6_, a_, G_, M_] :=
GMr2 2GM 2GM

3
a \/a2+4r‘2—4ar‘Cos[e] \/a2+4r2+4arCos[e]

Module[{M = 1, G = 1, a = 2, rMax = 4},

ContourPlot iBinar‘yStar‘sLocked[\/ x*+y*, ArcTan[y/x], a, G, M],
{x, -rMax, rMax}, {y, -rMax, rMax},

FrameLabel -» {Stl["x"], Stl["y"]}, Contours - 10,

PlotLegends - Automatic, ImageSize - 250]]
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Equipotentials of tidally locked binary stars. Nominal parametersarea=2,G=1,M=1.
For fixed a, the transition from circles (near the stars) to a tear drops (r of order a/2) to a single distorted shape (r > a) is
apparent.
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Visualization

Module[{M = 1, 0 = {@,0}, a = 2, r = 0.5, 6 = 7 /3, xMax = 1.5, S1, S2, P,
ptO, ptP, ptSl, ptS2, lineP, lineS1P, lineS2P, linea, orbit, txte, axes},
axes = {Gray, Line[{{-xMax, 0}, {xMax, ©}}], Line[{{O@, -xMax}, {0, xMax}}]};
s1 = {a/2, e.8}; s2 = {-a/2, e.0};
P = {rCos[6], rSin[e]};
pt0 = {Point[0], Text["O", O + {-0.1, ©}]1};
ptP = {Point[P], Text["P", P + {0.1, 0}]};
ptS1 = {Point[S1], Text["M:", S1 + {@0.1, ©0.1}]};
ptS2 = {Point[S2], Text["M,", S2 + {-0.1, 0.1}]};
orbit = Circle[{@, @}, a/2];
linea = {Directive[Black, Dashed],
Line[{S1 + {0, -0.1}, S2 + {0, -0.1}}], Text["a", {0, -0.2}1};

P
lineP = {Arrow[{O, P}], Text["r", + {-0.05, 0}]};

S1+P

linesiP = {Line[{S1, P}], Text["r,", + {0.1, 0.1}]};

S2 + P

lineS2P = {Line[{S2, P}], Text["r,", + {0, 0.1}]};

txte = Text["e", {0.1, 0.05}];

Graphics [ {axes, txte, orbit, linea, {PointSize[0.03], Point[S1], ptS1, ptS2},
pto, ptP, lineP, lineS1P, lineS2P}, AspectRatio - 1,
PlotRange - {{-xMax, xMax}, {-xMax, xMax}}, ImageSize - 250]]




